If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-6x-14=0
a = 10; b = -6; c = -14;
Δ = b2-4ac
Δ = -62-4·10·(-14)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{149}}{2*10}=\frac{6-2\sqrt{149}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{149}}{2*10}=\frac{6+2\sqrt{149}}{20} $
| 6n-8=-2n+16 | | 3x=54x=51 | | 10(5g-15)=60 | | x+19÷19=8 | | x+19=5=8 | | 2a+14=16 | | -(-7r-7)=11+7r | | 8x-7+5x=5(5x-3)+6 | | 75-3x=9-15 | | 8(-6x+2)=-12(4X-1)+4 | | 6j=84 | | 6(-6x+2)=-12(4x-1)+4 | | 2x+1−(2+x)−7=3x+7 | | 3r^2+6r+6=0 | | 1y-1y=34 | | -7x+5x+8=16 | | 5p+7p=12-3p | | 3x-(x/2+x/3)=52 | | 4(3w+2)-5(6w-1)=2(w-8)-6(7w-4)+4w-4 | | 4(6+2x)=-8 | | 12y-4=6y+14 | | 12y-4=6y | | 12y−4=6y+14 | | (4x+5)+(6x+5)+(7x+5)=66 | | 7-q=10 | | F(x)=4.2 | | 7(x+5)=68 | | 8a+5-6a=9 | | F(x)=x²+5x+12 | | 3f-2÷5=5 | | 3y÷8-5=7 | | 9(x+2)=86 |